20180716 MARTES

Mathematics

基本公式
\[sin(\theta )=\frac{对边}{斜边}, cos(\theta )=\frac{邻边}{斜边}, tan(\theta )=\frac{对边}{邻边}\]
定义
\[csc(x)=\frac{1}{sin(x)}, sec(x)=\frac{1}{cos(x)}, cot(x)=\frac{1}{tan(x)}\]
0 \(\frac{\pi}{6}\) \(\frac{\pi}{4}\) \(\frac{\pi}{3}\) \(\frac{\pi}{2}\)

sin

0

\(\frac{1}{2}\)

\(\frac{1}{\sqrt{2}}\)

\(\frac{\sqrt{3}}{2}\)

1

cos

1

\(\frac{\sqrt{3}}{2}\)

\(\frac{1}{\sqrt{2}}\)

\(\frac{1}{2}\)

0

tan

0

\(\frac{1}{\sqrt{3}}\)

1

\(\sqrt{3}\)

⭐️

\(sin(x)\)、\(tan(x)\)、\(cot(x)\) 及 \(csc(x)\) 都是 \(x\) 的奇函数。\(cos(x)\) 和 \(sec(x)\) 都是 \(x\) 的偶函数。

三角恒等式
\[\begin{align} tan(x)=\frac{sin(x)}{cos(x)} & , cot(x)=\frac{cos(x)}{sin(x)} \\ cos^{2}(x) + sin^{2}(x) & = 1 \\ 1+tan^{2}(x) & = sec^{2}(x) \\ cot^{2}(x)+1 & = csc^{2}(x) \\ sin(x) = cos(\frac{\pi}{2}-x), tan(x) & = cot(\frac{\pi}{2}-x), sec(x) = csc(\frac{\pi}{2}-x) \end{align}\]
公式
\[\begin{align} sin(A+B) & = sin(A)cos(B)+cos(A)sin(B) \\ cos(A+B) & = cos(A)cos(B)-sin(A)sin(B) \\ sin(A-B) & = sin(A)cos(B)-cos(A)sin(B) \\ cos(A-B) & = cos(A)cos(B)+sin(A)sin(B) \\ sin(2x) & = 2sin(x)cos(x) \\ cos(2x) & = 2cos^{2}(x) - 1 = 1 - 2sin^{2}(x) \end{align}\]

Algorithm

3Sum - LeetCode

Unresolved include directive in modules/ROOT/pages/20180716.adoc - include::https://raw.githubusercontent.com/diguage/leetcode/master/src/main/java/com/diguage/algorithm/leetcode/ThreeSum.java[]

Remove Duplicates from Sorted Array - LeetCode

Unresolved include directive in modules/ROOT/pages/20180716.adoc - include::https://raw.githubusercontent.com/diguage/leetcode/master/src/main/java/com/diguage/algorithm/leetcode/RemoveDuplicatesFromSortedArray.java[]

Remove Element - LeetCode

Unresolved include directive in modules/ROOT/pages/20180716.adoc - include::https://raw.githubusercontent.com/diguage/leetcode/master/src/main/java/com/diguage/algorithm/leetcode/RemoveElement.java[]

Review

I read Does your team write good code? on Saturday. I wrote my thoughts.

Tip

I wrote a Shell script. If you start the script, it can monitor the file change and then convert the AsciiDoctor files to HTML files. The source is as following:

Unresolved include directive in modules/ROOT/pages/20180716.adoc - include::example$asciidocd[]

English

Share

支付宝

微信

感谢您的支持,😜